

Date: 07-11-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
1	Answer the following	
a)	Define discrete topology with an example.	
b)	Can you say that union of two topologies on a set X a topology on X ? Justify	
c)	What do you mean by a homeomorphism between two topological spaces?	
d)	When can you say that a topological space is separated?	
e)	Define a normal space.	

SECTION A – K2 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
2	MCQ	
a)	If $X = [a, b, c]$ and for the given topologies $I_1 = [X, \emptyset, [a]]$ and $I_2 = [X, \emptyset, [b]]$ then (i) I_1 is finer than I_2 . (ii) I_2 is finer than I_1 . (iii) I_1 and I_2 are not comparable. (iv) None of the above.	
b)	$Y = [0, 1] \cup (2, 3)$ in R (i) $[0, 1]$ is only closed but not open in Y . (ii) $(2, 3)$ is only open but not closed in Y . (iii) $[0, 1]$ and $(2, 3)$ are neither open nor closed in Y . (iv) $[0, 1]$ and $(2, 3)$ are both open and closed in Y .	
c)	A topological space X is connected if and only if (i) the only sets both open and closed are \emptyset and X . (ii) $X = A \cup B$ where A and B are disjoint, nonempty open subsets of X . (iii) X is path connected. (iv) None of the above.	
d)	In the real line R which of the following is true? (i) $(0, 1]$ is compact (ii) $[0, 1]$ is compact (iii) $(0, 1]$ is closed (iv) $(0, 1]$ is not bounded	
e)	In a topological space, which of the following statement is true? (i) Any compact subset of a Hausdorff space need not be closed. (ii) Any closed subset of a compact space need not be compact. (iii) Any limit point compact space is compact space.	

	(iv) Any limit point compact space is sequentially compact.
--	---

SECTION B – K3 (CO2)

Answer any THREE of the following		(3 x 10 = 30)
3	Prove the sequence lemma and prove that a function $f: X \rightarrow Y$, where X is metrizable space and Y is a topological space is continuous if and only if for every convergent sequence $x_n \rightarrow x$ in X , the sequence $f(x_n)$ converges to $f(x)$.	
4	Demonstrate three equivalent conditions on the continuity of a function f from a topological space X to a topological space Y .	
5	Construct a metric space (X, \bar{d}) from the given metric space (X, d) such that every subset of X is bounded with respect to metric \bar{d} .	
6	Sketch the proof of any interval or a ray in a linear continuum L in the order topology is connected.	
7	Is every closed interval in R uncountable? Justify it.	

SECTION C – K4 (CO3)

Answer any TWO of the following		(2 x 12.5 = 25)
8	Is the union of connected sets having a point in common connected? Justify.	
9	Analyze the following statement: “If $f: X \rightarrow Y$ is a bijective continuous function, X is compact and Y is Hausdorff, then f is a homeomorphism”	
1	Examine whether the following statements are true?	
0	(i) X is compact metrizable space implies X is limit point compact space. (ii) X is sequentially compact metrizable space implies X is compact space.	
1	What are the separation axioms? Formulate them.	

SECTION D – K5 (CO4)

Answer any ONE of the following		(1 x 15 = 15)
1	Compare the topologies on R^n induced by the Euclidean metric d and the square metric ρ and the product topology on R^n .	
2	Is the product of finitely compact spaces compact? Justify it with a supportive proof.	

SECTION E – K6 (CO5)

Answer any ONE of the following		(1 x 20 = 20)
1	Design a characterization of a subset A of R^n is compact.	
4	Demonstrate Urysohn lemma.	

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$